Binary construction of quantum codes of minimum distances five and six
نویسندگان
چکیده
منابع مشابه
On the Minimum Distances of Non-Binary Cyclic Codes
We deal with the minimum distances of q-ary cyclic codes of length qm − 1 generated by products of two distinct minimal polynomials, give a necessary and sufficient condition for the case that the minimum distance is two, show that the minimum distance is at most three if q > 3, and consider also the case q = 3.
متن کاملSome new binary codes with improved minimum distances
It has been well-known that the class of quasi-cyclic (QC) codes contain many good codes. In this paper, a method to conduct a computer search for binary 2-generator QC codes is presented, and a large number of good 2-generator QC codes have been obtained. 5 new binary QC codes that improve the lower bounds on minimum distance are presented. Furthermore, with new 2-generator QC codes and Constr...
متن کاملconstruction and validation of the translation teacher competency test and the scale of students’ perceptions of translation teachers
the major purpose of this study was to develop the translation teacher competency test (ttct) and examine its construct and predictive validity. the present study was conducted in two phases: a qualitative phase as well as a quantitative phase. in the first phase of the study, the author attempted to find out the major areas of competency required for an academic translation teacher. the second...
Random codes: Minimum distances and error exponents
Minimum distances, distance distributions, and error exponents on a binary-symmetric channel (BSC) are given for typical codes from Shannon’s random code ensemble and for typical codes from a random linear code ensemble. A typical random code of length and rate is shown to have minimum distance (2 ), where ( ) is the Gilbert–Varshamov (GV) relative distance at rate , whereas a typical linear co...
متن کاملOn Upper Bounds for Minimum Distances and Covering Radius of Non-binary Codes
We consider upper bounds on two fundamental parameters of a code; minimum distance and covering radius. New upper bounds on the covering radius of non-binary linear codes are derived by generalizing a method due to S. Litsyn and A. Tiett avv ainen 10] and combining it with a new upper bound on the asymptotic information rate of non-binary codes. The new upper bound on the information rate is an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete Mathematics
سال: 2008
ISSN: 0012-365X
DOI: 10.1016/j.disc.2007.04.016